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Abstract. The master equation for a damped spin well known from the theory of superradiance, is written
as a finite-difference equation and solved by a WKB-like method. The propagator thus obtained looks like
the van Vleck propagator of a certain classical Hamiltonian system with one degree of freedom. A new
interpretation is provided of the temporal broadening of initially sharp probability distributions as the
analogue of the spreading of the quantum mechanical wave packet.
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1 Introduction

This is the second of a series of papers concerned with
dissipative motion of a large spin which may be realized
with many identical collectively radiating two-level atoms.
The large spin (the “Bloch vector” of quantum optics)
has conserved length such that its classical state can be
described by two angles  and . The classical dynamics
is that of an overdamped pendulum,

6 = sinf,
tan @ = ¢’ tan @ , (1.1)
(T) = const.

In geodesic jargon we could think of # and ¢ as defin-
ing latitude and longitude and speak of creeping motion
towards the south pole along a great circle.

The starting point of the first paper [1], which we shall
refer to as I, was the exact solution of the “superradiance
master equation” (see below) in the form of a Laplace in-
tegral [2]. We evaluated that integral in a saddle-point ap-
proximation and derived uniform asymptotics of the dis-
sipative propagator.

In the present paper we employ a different strategy far
less dependent on the specific properties of the problem.
We observe that in the limit of a large number N of atoms
the master equation becomes a finite-difference equation
with a small step, amenable to solution by an approxima-
tion of the WKB type. The propagator solution thus ob-
tained takes the form of a van Vleck propagator involving
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the action of a certain classical Hamiltonian system with
one degree of freedom. We find the pertinent Hamilton
equations to be equivalent to the saddle-point equation of
I. The WKB approximation entails a new interpretation of
the temporal broadening of initially sharp probability dis-
tributions as the analogue of the spreading of a quantum
mechanical wave packet.

As in I we shall employ the basis formed by the eigen-
states |jm) of J* and J, with the respective eigenvalues
j(j+1) and m. The quantum number j can take on integer
or half integer positive values (up to half the number N
of two-level atoms) and for fixed j the quantum number
m runs in unit steps from —j to +j. We are interested in
the limit of a large number of atoms or, more specifically,
of a large spin,

Vil+1)=j+1/2=J>1 (1.2)
Denoting the density matrix elements by (j,m +

k|p(T)|4,m—k) = p¥,(7) we can write the master equation
under study as

dp,

T = fgmiigm i1 — (gm — K0k (13)

where 7 is a suitably scaled dimensionless time and g,,
denotes the “rate function”

g = 3 +1) = m(m — 1). (L.4)
The particular solution p¥ (7) satisfying the initial con-
dition pf (r = 0) = &un with a certain n is called
the dissipative propagator and denoted as D¥,_ (7). The
solution for an arbitrary initial density matrix then is

Pra(T) = 30— D (1) (0).
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As shown in I, the master equation does not couple
density matrix elements with different skewness k. In par-
ticular, the probabilities (kK = 0) can be solved for inde-
pendently of the coherences (k # 0). The elements of the
“coherence propagator” D’,fm with k # 0 are connected by
an elementary relation with those of the density propaga-
tor DY (see below, Eq. (A.1)). When dealing with the
probabilities p2, and their propagator DS, we shall drop
the superscript k£ = 0.

2 Semiclassical asymptotics
2.1 Finite-difference equation

In the limit of large J it is convenient to introduce a new
independent variable p and its increment A as

p=m/J, A=J*t. (2.1)
In the classical limit p would become continuous in the
range —1 ... 1. For our semiclassical perspective y remains
discrete but neighboring values are separated by A. The

master equation (1.3) for the densities (case k = 0) be-
comes a finite difference equation,

Op (u,7) _ 2 oaa A
5 = J|\(1-# —pd——)p(utAr)

-—Q—M+wA—%3pwﬁﬂ.<zm

2.2 WKB ansatz

The WKB formalism for finite-difference equations with
a small step is well established. The general theory has
been worked out mostly by Maslov [3] whose notations we
shall adhere to. The WKB method for ordinary second-
order difference equations was extensively used to study
the eigenvalues of huge tridiagonal matrices occurring in
the theory of Rydberg atoms in external fields [4]. Closer
to our topic, the leading (exponential) term in the semi-
classical solution of master equations of the type (2.2) was
obtained in [5]. We follow the same lines but go a step
further by also establishing the preexponent, as is indeed
necessary to get meaningful results for most quantities of
interest.

Let us look for a solution of (2.2) in a form reminis-
cent of the WKB wave function in a classically forbidden
domain,

p(p,7) = A(p,7) W7 (2.3)
Here the prefactor A and the “action” S are smooth func-
tions satisfying the initial conditions

S(p,0)=So (),  Ap,0)=Ao (1) - (2.4)

In our case the absence of the imaginary unit from the ex-
ponential does not signal the sojourn of our spin in forbid-
den terrain but simply accounts for the dissipative charac-
ter of the dynamics in consideration. Incidentally, due to
the presence of the large parameter J even modest changes
of Sy are reflected in wild fluctuations of p(u, 0); the ansatz
therefore does not limit our discussion to smooth proba-
bility distributions.

No loss of generality is incurred by assuming the func-
tion S (u, 7) independent of J since the prefactor A (u, )
may pick up all dependence on J. We represent the latter
by an expansion in powers of A = J~!

A7) = A0 (1) + AV (1) A+ AP A% 4
(2.5)

The master equation (2.2) then allows to determine
S, A© . recursively. We shall need the equations for the
action and the zero-order prefactor,

as
@—l—(l—;ﬂ) |:1—68“:| =0,

— (2.6)

0 25 0
— e (1l — ) — (0
(87’ edr (1 u)au>lnA

95 10%8
=edn {(1—,“2)58—#2 —M] —pe (2.7)

We shall neglect all higher-order corrections to the zero-
order prefactor.

2.3 Hamiltonian dynamics
We may consider (2.6) as the Hamilton-Jacobi equation

for a classical system with one degree of freedom and the
Hamiltonian function

H(u,p) = (1- ) (1— 7). (2.8)
The canonical equations of motion
OH OH
1= —— = —(1 — u?)eP =" =92u(1—¢P
=5 (I—p)e?, p on p(l—e)

are easily integrated. In the resulting “Hamiltonian” tra-
jectories,

1 atna—p
T—2a1 @) atn’ (2.9)
B CL2 —/142

we denote by v the initial coordinate; the name “Hamil-
tonian” is meant to distinguish these solutions from the
trajectories of the overdamped pendulum (see below). The
second integration constant, a, determines the “energy”
E=H(u,p) as

1-F. (2.11)

a=
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Rather remarkably, the Hamiltonian trajectory (2.9) coin-
cides with the saddle-point equation incurred in I when ex-
amining the asymptotics of the Laplace representation of
the propagator. The saddle-point parameter a reappears
in a new “energetic” role. For later reference we note the
nonnegative “speed”

= —(a = ). (2.12)
A special class of trajectories has zero initial momentum,
p(t = 0) = 0, therefore vanishing energy F and a = 1.
Their Hamiltonian trajectories,

1, (en-p
27 (1-v)(+p)’

are in fact just those of the classical overdamped pendu-
lum (1.1), disguised by u = cos . They involve the canon-
ical momentum as conserved with the value zero.

The semiclassical quantum effects which our Hamil-
tonian dynamics imparts to the spin through the WKB
ansatz (2.3) may be seen in the existence of the Hamil-
tonian trajectories (2.9) not included in the special class
(2.13).

p(t) =0, (2.13)

2.4 Solution of the Hamilton-Jacobi equation

The familiar relation between canonical momentum and
action,

_ 05(p,7)

implies po (v) = 0S5y (v) /Ov at the initial moment 7 = 0.
Since Sy is fixed by the initial density distribution this
latter equation uniquely associates an initial momentum
with the initial coordinate v. One and only one Hamil-
tonian trajectory u(7;v) thus passes at 7 = 0 through
the initial coordinate v, provided of course that we con-
sider the initial probabilities as imposed. Conversely, we
can find the initial coordinate v = v(u, 7) from which the
current coordinate p is reached at time 7 along the unique
Hamiltonian trajectory.

The action S(u, 7) can now be obtained by integration
along the trajectory just discussed,

o

(2.15)

S (p,7) = [so (u)+/y pd,u—ET]

v=v(,7)

We use the explicit form of the Hamiltonian trajectories
(2.10) to do the integral. For the sake of later convenience
we express the resulting action in terms of the auxiliary
functions

o(a;p,v) = (v+a)ln(v+a) - (p+a)In(u+a)
—(a—v)ln(a—v)+(a—p)n(a—p), (2.16)

¢(/1'7 v, T) = [0(17 K, V) - U(av 122 V) +T(a2 - 1)]a=a(u,u,7—)
(2.17)

as

S(u7) = S0 () + Bt v, ]y - (218)
In the definition (2.17) of the function ¢ the parameter
a must, as indicated in the notation above, be read as a
function of the initial and final values of the coordinate
since these are at present considered as defining a Hamil-
tonian trajectory. We may interprete the function ¢ as
the action accumulated along the Hamiltonian trajectory
in question. Its derivatives with respect to p and v accord-
ingly give the final and initial momenta,

o a? — 12
o a? — 12
= In T_,2 = Po (2:20)

The Hamiltonian trajectory u(7;v) can be regarded as the
solution with respect to p of the equation

0P(p,v,7) _ 9S(v)

v ov (221)

2.5 WKB prefactor

The expression (2.7) for the prefactor can be simplified
using the notion of the full time derivative of a function
f(p,7) along the Hamiltonian trajectory u(r;v),

df (,7) _ Of (u(r,v),7)| _ Of of
dr or - 0T “au

v

)
T

w

since the left hand side in (2.7) is just the full time deriva-

tive dA/dt (see Eq. (2.14)). We next introduce the Jaco-

bian

Op (1, v)
ow

and a new exponent B(u,7) to rewrite the prefactor as

Y (rv) = Y (0;v) =1, (2.22)

eBwT)
A== (2.23)

The full time derivative of Y can be transformed to

vy  9*u 0 . 0 0H(u,p)

dr ~ orov %'u ov Op

_ Ou 0’H p 0°H
~ Ov \Oudp  Ou Op?
2 2 2
_y 8H+8S(M,T)8H
Oudp ou?  Op?

=Y exp (%) [2u - (1- ,ﬁ)g%f} . (2.24)

dB
So equipped we find the simple evolution equation i

-
—u for the function B(u,7) which can be integrated along
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the trajectory to give

B(u,7) = _/0 pudr +1n A (v,0)

1 a2_M2
= ——lnj +1nA(l/,0)

2.25
2 a2 ( )

We thus arrive at the asymptotic solution of the Cauchy
problem for our master equation with the initial condition
(2.4),

1 a? — V2 g
,T) = 2w ) (1,0)
p(p,7) GO p(v,0)
ov

(2.26)

where v, a are meant as functions of p and 7 as explained
above.

2.6 Narrow versus broad initial distributions

We have in effect constructed the solution (2.26) by the
method of characteristics. At any rate, the density at a
certain point is obtained from the initial density by trans-
port along the Hamiltonian trajectory and acquires a fac-
tor consisting of an exponential and a prefactor.

Let us show that the exponential factor is smaller than
or at most equal to unity. According to (2.19) the ex-
tremum of @ regarded as a function of the final coordi-
nate p with v, 7 fixed occurs when a = 1, i.e. when p
moves like for the overdamped pendulum, pu(m;v,a = 1) =
Upend(T; V) as defined by (2.13) or (1.1). At the extremum
we have @ = 0 and

0?®(u,v,7) = (2.27)
L P € A P
where = is a positive function defined as

- 1 v 1
“(M?V7T)_ ﬁ <T+ a2 — 12 - CL2—,LL2)

a=a(pv,r)

(2.28)

But since @ has a negative second derivative its extremum
is indeed a maximum, hence ¢ < 0. We should mention
that by using (2.27) it is easy to calculate the integral of
the density (2.26) over p by the saddle-point method and
to demonstrate that our solution does not violate proba-
bility conservation.

Let us consider two extreme cases of the initial density
distribution. First suppose that the initial density po(v) is
a smooth function, with a gradient of order unity, whence
So(v) vanishes. We would have pg = 0,a = 1 which
means that the characteristic lines are the overdamped-
pendulum trajectories (2.13). The time evolution (2.26)
then becomes the fully classical one,

1—1?
1—pu?

p(v,0)

V=Vclass(1,T)

p(p,7) = (2:29)

0.087
I
I\ Exact and WKB: filled contours
I Classical evolution: dashed line =0

0.06+

a  0.044
0.02
0.00- .
-1.0 -0.5 0.0 0.5 1.0

Fig. 1. Snapshots of the probability distribution p(u,7) at
various times, for the initially pure coherent state (y = 0.4, j =
200). The WKB (Eq. (2.26)) and exact results shown by filled
contours coincide in the scale of the plot. Dashed contours
correspond to the classical evolution formula (2.29) based on
the dynamics of the overdamped top. It grossly underestimates
the width and overestimates the height of the peaks.

The speed of probability transport in this case is obtained
by putting @ = 1 in (2.12); since that speed depends on
the coordinate the initial density distribution will change
its form in time, due to its finite spatial size. In particular,
that change involves broadening or sharpening depending
on whether the distribution resides mostly over positive
or negative values of p, respectively.

Now consider the opposite extreme of a narrow initial
density, perhaps one almost resembling a delta function.
Then different parts of the packet will have practically

the same coordinate but highly different momenta since

10
po A —ﬂ. The maximum has pg = 0 and thus moves
Jp() ov

along an overdamped-pendulum trajectory. However the
parts on the left and right slope have, respectively, py > 0
and pg < 0. They will be transported along the Hamilto-
nian trajectories with @ > 1 and a < 1, respectively. But
according to (2.12) that means that the density on the left
slope travels in the direction of negative p faster than the
one on the right slope. This will result in a spreading of
the initially narrow distribution. There is an obvious su-
perficial analogy with the decay of a wavepacket described
by the Schrodinger equation. Of course, in our dissipative
case the exponential factor does not describe any dephas-
ing but rather a suppression of probability propagation
along trajectories too strongly different from the fully clas-
sical overdamped-pendulum ones. This puts a brake on the
spreading as soon as the packet widens; quantitative esti-
mates of the width will be given below in the discussion
of the properties of the propagator.

As an example, in Figure 1 we demonstrate the time
dependence of the probability distribution in the case
when the system was initially in a pure coherent state of
the angular momentum |y) (for properties of such states
see e.g. [6,7]). The parameter y determines the direction of
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6o
the mean spin vector (y|J|y) as v = tan 506“150. We took

j = 200,y = 0.4. Three types of results are presented
using:

1. numerical integration of the master equation (“exact
values” );

2. the WKB solution (2.26);

3. the fully classical evolution formula (2.29).

The probability distributions given by the WKB formula
coincide with the exact ones with accuracy in the range
0.4%— 1.7% (accuracy decreases at the later stages of the
evolution). The corresponding plots are indistinguishable.
On the other hand, the fully classical formula correctly
places the probability peaks but grossly underestimates
their broadening with time leading to 20%-150% error in
the width and amplitude; this error does not diminish as

J grows(!)

2.7 The semiclassical dissipative propagator

The dissipative propagator establishes a linear relation be-
tween the initial and final density matrix elements. In the
limit of large J the sum in this relation can be replaced by
an integral; using the classical variables u, v as arguments
it can be written (case k = 0)

p () = / D (1,.7) (110 (2.30)

with the function D(u, v, 7) related to the matrix D, (7)
as D (u,v,7) = J Dy (7)|

To obtain the propagator one has to solve the mas-
ter equation with the J-peak as the initial density dis-
tribution. Strictly speaking such an initial condition does
not fall into the class (2.3) such that our solution of the
Cauchy problem (2.26) is not directly applicable. It is
easy, however, to extract the propagator out of (2.26) in a
slightly roundabout way. The semiclassical solution of the
dissipative problem in the form (2.3) points to an anal-
ogy between our master equation for the densities and a
Schrodinger equation in imaginary time. In the spirit of
that analogy we may consider the function D(u,v,7) in
(2.30) as the van Vleck propagator [8] which must have
the structure

m=Jun=Jv"

D (0, 7) = Rl v, )00 (231
with @ (u, v, 7) the action accumulated along the trajec-
tory.

Our task is to establish the prefactor R. To do so let
us substitute the initial density (2.3) and the semiclassi-
cal propagator in the form (2.31) into (2.30) and perform
the integration in the saddle-point approximation. The
maximum v* = v*(u,7) of the exponent just defines the
Hamiltonian trajectories in the form (2.21). The saddle-

point integration thus gives

pn7) = R, 1)y 7
%P (u,v,7) + So (v -1z
[ ZRrn 0]

x e W) b (1, 0) (2.32)

where v*(u,7) should be substituted for v. Comparing
with (2.26) we find the prefactor,

a? — 12

J 82 1/2 a2 _ [142
21 Y e L
It { o2 [ (/J,, v, T) + S0 (V)]} 8H (T, v

v

(2.33)

R =

~—

A simpler form results once we realize from (2.21) the
Jacobian to satisfy

82
8/1, W [¢ (M? v, T) + So (V)] 9.34
o 0?® (u, v, 7) . (2.34)
ovou

For the propagator we thus find

J 0@ (u,v,7) V2 g2 — 2 (e
D(M7V7T):|:% o _:| 7(12—#26 () |

(2.35)

Compared with the van Vleck propagator for the
Schrédinger equation [8] the preexponential in this expres-
sion contains an additional square root factor, the origin
of which can be traced to the difference in the normaliz-
ing condition for wave functions and density matrices. It
is system specific in as much as a is a solution of (2.10).
Note, however, that on the classical trajectory (a = 1)
this factor is just the square root of the classical jacobian
dp=t(w)/dp, with v = p=1(u) the inverted classical tra-
jectory (2.13). One easily verifies that both square roots
in (2.35) give rise to the same factor and combine to the
jacobian to the power one, as it is necessary to guarantee
probability conservation.

By expressing the mixed derivative of the action @ in
the preexponent in terms of the function =(u,v, ) intro-
duced in (2.28),

Pd(u,v,7)
oudv
(2.36)

we arrive at the final form of our semiclassical density
propagator matrix D,

1
D T) = eJé(“’”’T) m n
) = (@ aaeE s
(2.37)
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in which a must be read as the function a = a(y, v, 7) since
a Hamiltonian tractory is already uniquely determined by
specifying the initial and final coordinates. While in gen-
eral that function can be found only numerically from the
Hamiltonian trajectories (2.9), certain limits do yield ap-
proximate analytical expressions (see below). Note that a
is always larger than the larger of |y, |v|.

The behaviour of the propagator solution is largely de-
termined by the action @. T'wo situations deserve special
mention. First suppose that the initial quantum number n
is not close to j. Then we encounter a narrow packet cen-
tered around the “fully classical” final point ppend(T;v)
where the maximum of @ is located. Close to that maxi-
mum the propagator can be represented by the Gaussian

_ (— ﬂpend)2]

D (T) (2.38)

1

~ - Nor exp [ WP
whose width d(v,7) is determined by the second deriva-
tive of the action (2.27). If expressed in terms of the clas-
sical coordinate p the width d = [—J P, (Lpend; V, 7')]_1/2
goes to zero in the classical limit like J~1/2 such that for
many purposes the propagator (2.38) may even be identi-
fied with the J-function.

A radically different situation is met with when the
initial quantum number n is close or equal to j so that
the initial coordinate v tends to 1 when J — oo. The
action accumulated along any Hamiltonian trajectory is
then close to zero like 1 — v and so is its second derivative.
Indeed, one easily checks what we already saw in I,

a~1-— (1 - 6727—/) Oy (2.39)

with

bp=1-v=_G-—n)/J (2.40)
where 71 = T — Teass(i,v) denotes a quantum time
shift, i.e. the difference between the travel times along
the Hamiltonian trajectories (2.9) and the overdamped-
pendulum ones (2.13). The action then comes out as

b ~4, (1 o7 e*2T') : (2.41)
Obviously, the exponent J& tends to a finite function of
the relative time 7/ when J tends to infinity as j — n is
kept fixed. The exponential factor is then only slightly
less than unity along a Hamiltonian trajectory. Thus the
width of the distribution does not tend to zero but rather
stays finite as J — oo.

2.8 Comparison of the semiclassical propagators

The semiclassical propagator obtained in I by the saddle-
point method,

1 IP(u7)

Dran(r) = (1—p2)V2rJ5

(2.42)

intriguingly differs from our present (2.37) in two respects.
First, instead of a? — p? in the prefactor, (2.42) contains
1—p2. Second, in (2.42) and in the whole of I we connected

the classical coordinate p to the quantum number m by

m

i = ———, which differs from our present definition p =

m/J by the small shift A = J~1.

Let us show that these two changes in fact cancel each
other to leading order in J~!. Consider the form (2.37) of
our present propagator and substitute pu = ' + A with p’/
the shifted argument (m — 1)/J. If m is not very close to
n the denominator in the prefactor is not small and one
can neglect its change brought about by the replacement
1 — p’. As regards the exponent we must exercize greater
care: The large factor J obliges us to keep two terms in
the expansion

JP(p,v,7) = JO(u' + A, v,7)
a? — 2
1= 2 +0(4).

=Jo(p,v,7) +In (2.43)

The logarithm arising here obviously modifies the prefac-
tor just so as to bring about the propagator (2.42) of the
previous paper. Therefore, for J — co and m not close to
n, the two forms (2.42) and (2.37) of the propagator are
equivalent.

If m approaches n the equivalence of the formulae
(2.37) and (2.42) does not hold any more: the accuracy
of (2.42) is higher. In the extreme cases when n —m or
j—n or j = m are of order unity or zero! the uniform
approximation for the propagator should be used instead
of either (2.37) or (2.42) (see Sect. 1).

3 Conclusion

The role of the WKB approximation in quantum mechan-
ics as a bridge to classical mechanics is common knowl-
edge. What is not fully appreciated, though, is its po-
tential usefulness for dissipative problems described by
master equations. The problem of spin damping in su-
perradiance may serve as a good example.

All results of the present paper followed from the WKB
ansatz (2.3). It led us to a Hamilton-Jacobi equation of a
classical mechanical system with one degree of freedom.
The two canonical variables satisfy two Hamilton equa-
tions which require two initial or boundary data (like the
initial coordinate and the initial momentum or the initial
and final coordinate) to define a trajectory. This contrasts
with the trajectories of the overdamped pendulum model
described by a single differential equation of first order
which are uniquely defined by the initial coordinate only.
The extended family of Hamiltonian trajectories suggests
an intuitive explanation of the quantum broadening of an
initially sharp distributions alien to the traditional classi-
cal model: Although all relevant classical trajectories have

! These cases are similar to the ground state of a quan-
tum system and cannot be adequately described by the WKB
method.
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Ap(n; i, 7)
7 or

=VA—(u+n)?—(p+nA[L—(p—n)2%—(p—n)Apm;un+ A7)
—J2 (1= p® = n* + pA) p(n; p, 7) + O(A?).

(A.4)

the same initial coordinate, the initial momenta are dif-
ferent, and so are the final coordinate.

There is of course a basic difference between the
spreading of wave functions and the dissipative propaga-
tion of probabilities. In the case of unitary evolution the
probability amplitudes to arrive from a fixed initial point
to different final points differ by the phase accumulated
along the respective classical trajectory (that is, if we ne-
glect the prefactor). Consequently, propagation along all
classical trajectories starting from the same initial point
takes place with a comparable probability. In our dissi-
pative problem the exponent of the WKB solution is ei-
ther zero or negative. This means that there is no equality
among the Hamiltonian trajectories starting at the same
initial point: the one which corresponds to vanishing ac-
tion (the fully classical overdamped-pendulum trajectory)
is privileged to contribute most. Probability propagation
along trajectories significantly removed from that privi-
leged one is effectively suppressed. As a result the final
width of an initially sharp distribution remains small, un-
like the eventually infinite dispersion of the wavepacket of
a free particle. The exceptional character of the superra-
diant evolution starting from the highest energy levels is
also easily understood. In that case the classical action is
close to zero on all trajectories. Therefore the exponen-
tial factor does not limit any more the broadening of the
distribution with time.

The necessity to extend the dynamics of the
overdamped-pendulum model was recognized long ago, see
the reviews [9,10]. In [11] a family of trajectories described
by two first order differential equations was considered
(they were introduced as the characteristics in the propa-
gation of quasiprobability distributions); the two variables
there employed did not form a canonical pair, though; one
of them was related to our present coordinate p and the
other to the transverse components of the spin.

Our present WKB approach has the merit of being
easily extended to other problems in dissipative quantum
mechanics. Apart from providing an intuitive qualitative
picture involving a Hamiltonian equivalent it also pro-
vides a convenient analytic approximation for the dissi-
pative propagator. In particular we used it to calculate
the width of the final distribution in the case when the
initial direction of the Bloch vector was not close to the z
axis. This result is of little significance for the theory of su-
perradiance itself. However, the master equation (1.3) be-
comes increasingly important as a model in investigations
of quantum chaos in dissipative systems [12,13]; disregard
of the final width of the propagator solutions would lead
to erroneous results there. We shall extend the present
work to dynamics with chaos in a subsequent paper.

Appendix A: Propagation of coherences

No separate investigation of the coherence propagator
DE () is necessary because of the identity proven in I,

\/mek,nkam+k,n+k ek27_/]

Dlncm(T) = Dpn(7) Omm (A1)
with
oy GG - m)t
Qmn = H g1 = (] i m)|(] — TL)' (AQ)

I=m+1

It is instructive, however, to consider the changes in our
Hamilton-Jacobi formalism necessitated by nonzero k.
The new quantum number k& whose range goes to infinity
when j — oo must be accompanied with a macroscopic
variable

n= j : (A-3)

The master equation (1.3) written with u, v as arguments
now reads

See equation (A.4) above

A Hamilton-Jacobi ansatz

p(n; 1, 7) = A(g; p, 7)€ S#T)

entails a chain of differential equations for the “action”
S and the terms in the expansion of the amplitude A in
powers of A. We shall examine only the Hamilton-Jacobi
equation

(A.5)

oS oS
— - F — | = A.
5o+ 00~ Fiexn (52) =0 (A0
where F' and G denote the auxiliary functions
F(u) = V/[1 = (u+n)?[L — (u—n)?,
G(p) =1—p? = (A7)
The previous Hamiltonian becomes extended to
H(p,p) = G(p) — F(p)e”. (A.8)

Once more denoting the conserved value of H by E and
introducing the constant a by the relation

a=+/1—FE —n?

we obtain the canonical equation for the coordinate,

(A.10)

(A.9)

fo=—Fe? = —(a® — %),
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It coincides with (2.12), and its integration leads to ex-
actly the same trajectories (2.9) as for the densities. The
characteristic lines for the coherences propagation are the
same as the ones for probability propagation.

There is one cardinal difference. For £k = 0 we could
single out the special trajectories with zero initial mo-
menta. Only these were important in the case of smooth
initial densities, according to the relation p ~ d1lnp/Jou.
Since the initially vanishing momentum remained zero at
7 # 0, an initially smooth density remained smooth as
long as T was not too large (before the system reached its
lowest energy level). Smooth density distributions there-
fore form a closed class, and the overdamped-pendulum
trajectories are their routes of propagation.

In the case of coherences it is also possible to select the
trajectories corresponding to smooth initial distributions
or zero initial momenta: the parameter a should be chosen
then according to

a=1-n>-G)+F(v), (A.11)
but now these trajectories do not have the physical signif-
icance of the fully classical trajectories of the overdamped
pendulum. The reason simply is that an initially vanishing
momentum p will no longer be zero when 7 # 0. Indeed,
unless 7 = 0 and a = 1, the momentum

p=1In

a? — 2
VL= (e +n)?][L = (n—n)?]

with g = p(7) can never be a constant. Remembering the
momentum-density connection we conclude that an ini-
tially smooth distribution of coherences inevitably ceases
to be smooth in the course of time. Thus there is no
special class of characteristics responsible for transport-
ing smooth distributions of coherences and leaving them
smooth, hence no elementary relation like (2.29).

Our considerations throw light on the important
question whether it is admissible to replace the master

=In

. (A12)

equation by a first-order differential equation using ap-
proximations like

~ . 4 OPm
Pm+1 =~ Pm om

(A.13)
Such a replacement is justified if the respective elements
of the density matrix are and remain smooth functions of
m. It follows:

— In the case of density propagation the above replace-
ment (A.13) is justified provided the initial density dis-
tribution is smooth.

— For coherences the replacement (A.13) is always illegal.
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